

QUADRO DE TRANSFERÊNCIA AUTOMÁTICA - QTA

APRESENTAÇÃO

MODELOS

Modelos	Corrente Max.	Polos	Material Quadro
QTA-BP63	63A	Bipolar	Plástico
QTA-BM63	63A	Bipolar	Metálico
QTA-TP63	63A	Tetrapolar	Plástico
QTA-TM63	63A	Tetrapolar	Metálico

FUNÇÕES

- Controle automático da transferência de energia rede/gerador
- Seleção do modo de funcionamento: manual ou automático
- Ligação automática do gerador com a falta de energia na rede
- Função de carregador para bateria 12V do gerador
- Indicação do estado da chave através de LEDs na frontal
- Software gratuito para PC de configurações das funções
- Programação configurável dos tempos do gerador
- Programação configurável para teste automático do gerador
- Compatível com geradores a diesel ou gasolina
- Indicado para pequenos e médios geradores

ESPECIFICAÇÕES

Características Técnicas	
Tensão de Controle da Chave	220Vca
Tensão do Controlador	12Vcc
Frequência	50/60Hz
Consumo de energia	10~100W
Tempo para Transferência	≥ 5 segundos
Tensão de Trabalho (Ue)	220 ou 380Vca
Tensão Nominal de Isolação (Ui)	690Vca
Capacidade de interrupção em curto-circuito Icn	6kA
Temperatura de operação	-5 á 40°C
Vida Útil Mecânica (manobras)	20k
Comunicação com PC	USB (micro USB)
Dimensões quadro plástico (CxLxA)	350x260x170mm
Dimensões quadro metálico (CxLxA)	400x300x200mm

O quadro de transferência automática de energia entre a concessionária e o gerador é ideal para melhorar a eficiência da sua instalação, além de solucionar problemas com falta de energia elétrica. Após a queda ou desligamento da energia este quadro da partida automaticamente no gerador, após um determinado tempo configurável, transferindo a alimentação da carga para o gerador. Com o retorno da energia na rede principal, o quadro faz a transferência para a concessionária novamente e envia um comando para o desligamento do gerador.

Este produto é indicado para pequenos e médios geradores, sejam a gasolina ou diesel. O controlador que integra o conjunto deste quadro é configurável, através de um software gratuito para computador. Pelo software é possível configura-lo de acordo com as características próprias do seu gerador, bem como da sua aplicação.

DIAGRAMA DE LIGAÇÃO

QTA-B - Quadro Bipolar 220V

Conexão Gerador

Conector Tipo Mike* (5 vias) *Acompanha o conector macho já acoplado na parte inferior do quadro.

1(Vermelho) Positivo da Fonte 2(Cinza) Sinal de Partida 3(Amarelo) Relé de Parada 4(Azul) Relé de Parada 5(Preto) Negativo da Fonte

Explicação Terminais **1** e **5** - Carregador para a Bateria do Gerador

Terminais **3** e **4** - Relé parada Bomba Combustível Gerador

Terminal **2** - Sinal de Partida para ligar o Gerador

QTA-T - Quadro Tetrapolar 220/380V

QUADRO DE TRANSFERÊNCIA AUTOMÁTICA - QTA

FUNCIONAMENTO DO QUADRO

FUNCIONAMENTO DO CONTROLADOR

Explicação dos parâmetros do software de configuração do controlador na próxima página

■ SOFTWARE DE CONFIGURAÇÃO DO CONTROLADOR

Explicação dos parâmetros contidos no software

Indicação	Nome	Valores	Padrão	Explicação
01	Número de tentativas de ligar	1~5 Tentativas	3	Tentativas que o controlador irá fazer para ligar o gerador
02	Tempo Afogador	1~20 Segundos	5	Tempo do afogador necessário para que o gerador desligue
03	Tempo de Resfriamento	1~30 Segundos	20	Tempo pelo qual o gerador irá ficar ligado para resfriamento, após ter sido utilizado para alimentar a carga
04	Tempo de Partida	1~20 Segundos	5	Tempo de atraso para ligar o gerador após falta da rede principal
05	Tempo de Aquecimento	1~60 Segundos	20	Tempo do gerador ligado para fazer a transferência de carga
06	Tempo de Arranque	1~10 Segundos	3,5	Duração do tempo de arranque para dar partida no gerador
07	Tempo para Retorno da Rede	1~300 Segundos	10	Tempo de atraso após o retorno da rede principal, para fazer a transferência da carga para a rede principal
08	Tempo entre as partidas	1~60 Segundos	10	Tempo entre as tentativas de partir o gerador
09	Configuração de conexão	1~127 Portas	1	No campo selecione a porta de comunicação utilizada pelo controlador. Após clique em Conectar para poder fazer alterações
10	Duração dos Testes	1~30 Minutos	10	Quanto tempo o gerador ficará ligado em cada um dos testes
11	Intervalo de Dias dos Testes	3~14 Dias	7	Intervalo de dias em que serão feitos os testes do gerador
12	Hora para o Teste	00:00 Horário	10:00	Horário do dia em que será feita a ligação de teste do gerador
13	Ajuste da Data/Hora	Data e Hora	Atual	O botão sincronizar ajusta o horário de acordo com o PC

Atenção, importante:

Antes de começar a fazer alterações nos parâmetros é necessário seguir os passos de conexão com PC mostrados no final da página 2.

Para realizar alterações nos parâmetros primeiro selecione a porta do controlador e faça a conexão apresentada na indicação 09.

Após realizar as alterações nos parâmetros, reinicialize ou de um reset no controlador para que as alterações tenham efeito.

• Importante se ater as configurações físicas no controlador (pag. 2), para que as funções do software funcionem como desejado.

Testes Automáticos do Gerador:

Enquanto a função de teste estiver ativa, o controlador irá ligar o gerador com o intervalo de dias inseridos no parâmetro "11 - Intervalo de Dias dos Testes", no horário configurado no parâmetro "12 - Hora para o Teste" e mantê-lo ligado durante o tempo programado no parâmetro "13 - Duração dos Testes". Os testes tem a finalidade de verificar o pleno funcionamento do gerador, para que quando necessário ele esteja disponível. Portanto caso algum dos testes programados não consiga ligar o gerador, o controlador irá entrar em estado de erro, para que o usuário consiga visualizar e solucionar o problema apresentado pelo gerador. Durante os testes não é realizada a transferência da carga para o gerador.

